Byte-snake-engine/standard.go
Torben e1289af5fb
DEV-1479 ensure snake elimination turn is set (#93)
* ensure snake elimination turn is set

- centralise elimination update logic to a single place to ensure consistency

* doc the method

* testing
2022-07-21 14:26:56 -07:00

440 lines
11 KiB
Go

package rules
import (
"math/rand"
"sort"
)
type StandardRuleset struct {
FoodSpawnChance int // [0, 100]
MinimumFood int
HazardDamagePerTurn int
HazardMap string // optional
HazardMapAuthor string // optional
}
var standardRulesetStages = []string{
StageGameOverStandard,
StageMovementStandard,
StageStarvationStandard,
StageHazardDamageStandard,
StageFeedSnakesStandard,
StageEliminationStandard,
}
func (r *StandardRuleset) Name() string { return GameTypeStandard }
func (r *StandardRuleset) ModifyInitialBoardState(initialState *BoardState) (*BoardState, error) {
// No-op
return initialState, nil
}
// impl Pipeline
func (r StandardRuleset) Execute(bs *BoardState, s Settings, sm []SnakeMove) (bool, *BoardState, error) {
return NewPipeline(standardRulesetStages...).Execute(bs, s, sm)
}
func (r *StandardRuleset) CreateNextBoardState(prevState *BoardState, moves []SnakeMove) (*BoardState, error) {
_, nextState, err := r.Execute(prevState, r.Settings(), moves)
return nextState, err
}
func MoveSnakesStandard(b *BoardState, settings Settings, moves []SnakeMove) (bool, error) {
if IsInitialization(b, settings, moves) {
return false, nil
}
// no-op when moves are empty
if len(moves) == 0 {
return false, nil
}
// Sanity check that all non-eliminated snakes have moves and bodies.
for i := 0; i < len(b.Snakes); i++ {
snake := &b.Snakes[i]
if snake.EliminatedCause != NotEliminated {
continue
}
if len(snake.Body) == 0 {
return false, ErrorZeroLengthSnake
}
moveFound := false
for _, move := range moves {
if snake.ID == move.ID {
moveFound = true
break
}
}
if !moveFound {
return false, ErrorNoMoveFound
}
}
for i := 0; i < len(b.Snakes); i++ {
snake := &b.Snakes[i]
if snake.EliminatedCause != NotEliminated {
continue
}
for _, move := range moves {
if move.ID == snake.ID {
appliedMove := move.Move
switch move.Move {
case MoveUp, MoveDown, MoveRight, MoveLeft:
break
default:
appliedMove = getDefaultMove(snake.Body)
}
newHead := Point{}
switch appliedMove {
// Guaranteed to be one of these options given the clause above
case MoveUp:
newHead.X = snake.Body[0].X
newHead.Y = snake.Body[0].Y + 1
case MoveDown:
newHead.X = snake.Body[0].X
newHead.Y = snake.Body[0].Y - 1
case MoveLeft:
newHead.X = snake.Body[0].X - 1
newHead.Y = snake.Body[0].Y
case MoveRight:
newHead.X = snake.Body[0].X + 1
newHead.Y = snake.Body[0].Y
}
// Append new head, pop old tail
snake.Body = append([]Point{newHead}, snake.Body[:len(snake.Body)-1]...)
}
}
}
return false, nil
}
func getDefaultMove(snakeBody []Point) string {
if len(snakeBody) >= 2 {
// Use neck to determine last move made
head, neck := snakeBody[0], snakeBody[1]
// Situations where neck is next to head
if head.X == neck.X+1 {
return MoveRight
} else if head.X == neck.X-1 {
return MoveLeft
} else if head.Y == neck.Y+1 {
return MoveUp
} else if head.Y == neck.Y-1 {
return MoveDown
}
// Consider the wrapped cases using zero axis to anchor
if head.X == 0 && neck.X > 0 {
return MoveRight
} else if neck.X == 0 && head.X > 0 {
return MoveLeft
} else if head.Y == 0 && neck.Y > 0 {
return MoveUp
} else if neck.Y == 0 && head.Y > 0 {
return MoveDown
}
}
return MoveUp
}
func ReduceSnakeHealthStandard(b *BoardState, settings Settings, moves []SnakeMove) (bool, error) {
if IsInitialization(b, settings, moves) {
return false, nil
}
for i := 0; i < len(b.Snakes); i++ {
if b.Snakes[i].EliminatedCause == NotEliminated {
b.Snakes[i].Health = b.Snakes[i].Health - 1
}
}
return false, nil
}
func DamageHazardsStandard(b *BoardState, settings Settings, moves []SnakeMove) (bool, error) {
if IsInitialization(b, settings, moves) {
return false, nil
}
for i := 0; i < len(b.Snakes); i++ {
snake := &b.Snakes[i]
if snake.EliminatedCause != NotEliminated {
continue
}
head := snake.Body[0]
for _, p := range b.Hazards {
if head == p {
// If there's a food in this square, don't reduce health
foundFood := false
for _, food := range b.Food {
if p == food {
foundFood = true
}
}
if foundFood {
continue
}
// Snake is in a hazard, reduce health
snake.Health = snake.Health - settings.HazardDamagePerTurn
if snake.Health < 0 {
snake.Health = 0
}
if snake.Health > SnakeMaxHealth {
snake.Health = SnakeMaxHealth
}
if snakeIsOutOfHealth(snake) {
EliminateSnake(snake, EliminatedByOutOfHealth, "", b.Turn+1)
}
}
}
}
return false, nil
}
func EliminateSnakesStandard(b *BoardState, settings Settings, moves []SnakeMove) (bool, error) {
if IsInitialization(b, settings, moves) {
return false, nil
}
// First order snake indices by length.
// In multi-collision scenarios we want to always attribute elimination to the longest snake.
snakeIndicesByLength := make([]int, len(b.Snakes))
for i := 0; i < len(b.Snakes); i++ {
snakeIndicesByLength[i] = i
}
sort.Slice(snakeIndicesByLength, func(i int, j int) bool {
lenI := len(b.Snakes[snakeIndicesByLength[i]].Body)
lenJ := len(b.Snakes[snakeIndicesByLength[j]].Body)
return lenI > lenJ
})
// First, iterate over all non-eliminated snakes and eliminate the ones
// that are out of health or have moved out of bounds.
for i := 0; i < len(b.Snakes); i++ {
snake := &b.Snakes[i]
if snake.EliminatedCause != NotEliminated {
continue
}
if len(snake.Body) <= 0 {
return false, ErrorZeroLengthSnake
}
if snakeIsOutOfHealth(snake) {
EliminateSnake(snake, EliminatedByOutOfHealth, "", b.Turn+1)
continue
}
if snakeIsOutOfBounds(snake, b.Width, b.Height) {
EliminateSnake(snake, EliminatedByOutOfBounds, "", b.Turn+1)
continue
}
}
// Next, look for any collisions. Note we apply collision eliminations
// after this check so that snakes can collide with each other and be properly eliminated.
type CollisionElimination struct {
ID string
Cause string
By string
}
collisionEliminations := []CollisionElimination{}
for i := 0; i < len(b.Snakes); i++ {
snake := &b.Snakes[i]
if snake.EliminatedCause != NotEliminated {
continue
}
if len(snake.Body) <= 0 {
return false, ErrorZeroLengthSnake
}
// Check for self-collisions first
if snakeHasBodyCollided(snake, snake) {
collisionEliminations = append(collisionEliminations, CollisionElimination{
ID: snake.ID,
Cause: EliminatedBySelfCollision,
By: snake.ID,
})
continue
}
// Check for body collisions with other snakes second
hasBodyCollided := false
for _, otherIndex := range snakeIndicesByLength {
other := &b.Snakes[otherIndex]
if other.EliminatedCause != NotEliminated {
continue
}
if snake.ID != other.ID && snakeHasBodyCollided(snake, other) {
collisionEliminations = append(collisionEliminations, CollisionElimination{
ID: snake.ID,
Cause: EliminatedByCollision,
By: other.ID,
})
hasBodyCollided = true
break
}
}
if hasBodyCollided {
continue
}
// Check for head-to-heads last
hasHeadCollided := false
for _, otherIndex := range snakeIndicesByLength {
other := &b.Snakes[otherIndex]
if other.EliminatedCause != NotEliminated {
continue
}
if snake.ID != other.ID && snakeHasLostHeadToHead(snake, other) {
collisionEliminations = append(collisionEliminations, CollisionElimination{
ID: snake.ID,
Cause: EliminatedByHeadToHeadCollision,
By: other.ID,
})
hasHeadCollided = true
break
}
}
if hasHeadCollided {
continue
}
}
// Apply collision eliminations
for _, elimination := range collisionEliminations {
for i := 0; i < len(b.Snakes); i++ {
snake := &b.Snakes[i]
if snake.ID == elimination.ID {
EliminateSnake(snake, elimination.Cause, elimination.By, b.Turn+1)
break
}
}
}
return false, nil
}
func snakeIsOutOfHealth(s *Snake) bool {
return s.Health <= 0
}
func snakeIsOutOfBounds(s *Snake, boardWidth int, boardHeight int) bool {
for _, point := range s.Body {
if (point.X < 0) || (point.X >= boardWidth) {
return true
}
if (point.Y < 0) || (point.Y >= boardHeight) {
return true
}
}
return false
}
func snakeHasBodyCollided(s *Snake, other *Snake) bool {
head := s.Body[0]
for i, body := range other.Body {
if i == 0 {
continue
} else if head.X == body.X && head.Y == body.Y {
return true
}
}
return false
}
func snakeHasLostHeadToHead(s *Snake, other *Snake) bool {
if s.Body[0].X == other.Body[0].X && s.Body[0].Y == other.Body[0].Y {
return len(s.Body) <= len(other.Body)
}
return false
}
func FeedSnakesStandard(b *BoardState, settings Settings, moves []SnakeMove) (bool, error) {
newFood := []Point{}
for _, food := range b.Food {
foodHasBeenEaten := false
for i := 0; i < len(b.Snakes); i++ {
snake := &b.Snakes[i]
// Ignore eliminated and zero-length snakes, they can't eat.
if snake.EliminatedCause != NotEliminated || len(snake.Body) == 0 {
continue
}
if snake.Body[0].X == food.X && snake.Body[0].Y == food.Y {
feedSnake(snake)
foodHasBeenEaten = true
}
}
// Persist food to next BoardState if not eaten
if !foodHasBeenEaten {
newFood = append(newFood, food)
}
}
b.Food = newFood
return false, nil
}
func feedSnake(snake *Snake) {
growSnake(snake)
snake.Health = SnakeMaxHealth
}
func growSnake(snake *Snake) {
if len(snake.Body) > 0 {
snake.Body = append(snake.Body, snake.Body[len(snake.Body)-1])
}
}
// Deprecated: handled by maps.Standard
func SpawnFoodStandard(b *BoardState, settings Settings, moves []SnakeMove) (bool, error) {
if IsInitialization(b, settings, moves) {
return false, nil
}
numCurrentFood := int(len(b.Food))
if numCurrentFood < settings.MinimumFood {
return false, PlaceFoodRandomly(GlobalRand, b, settings.MinimumFood-numCurrentFood)
}
if settings.FoodSpawnChance > 0 && int(rand.Intn(100)) < settings.FoodSpawnChance {
return false, PlaceFoodRandomly(GlobalRand, b, 1)
}
return false, nil
}
func (r *StandardRuleset) IsGameOver(b *BoardState) (bool, error) {
return GameOverStandard(b, r.Settings(), nil)
}
func GameOverStandard(b *BoardState, settings Settings, moves []SnakeMove) (bool, error) {
numSnakesRemaining := 0
for i := 0; i < len(b.Snakes); i++ {
if b.Snakes[i].EliminatedCause == NotEliminated {
numSnakesRemaining++
}
}
return numSnakesRemaining <= 1, nil
}
func (r StandardRuleset) Settings() Settings {
return Settings{
FoodSpawnChance: r.FoodSpawnChance,
MinimumFood: r.MinimumFood,
HazardDamagePerTurn: r.HazardDamagePerTurn,
HazardMap: r.HazardMap,
HazardMapAuthor: r.HazardMapAuthor,
}
}
// impl Pipeline
func (r StandardRuleset) Err() error {
return nil
}
// IsInitialization checks whether the current state means the game is initialising.
func IsInitialization(b *BoardState, settings Settings, moves []SnakeMove) bool {
// We can safely assume that the game state is in the initialisation phase when
// the turn hasn't advanced and the moves are empty
return b.Turn <= 0 && len(moves) == 0
}